Recap

Gradient Histogram

A very powerful idea that is the basis for many image & feature descriptors.

Why? Hint: invariant in more than one way...

Look at a (local) region and calculate local gradients, then bin the gradients in a histogram.

How to get direction and magnitude of edges?

\[m(x, y) = \sqrt{(L_x(x + 1, y) - L_x(x - 1, y))^2 + (L_y(x, y + 1) - L_y(x, y - 1))^2} \]

\[\theta(x, y) = \tan^{-1} \left(\frac{L_y(x, y)}{L_x(x, y)} \right) \]

Most can be pre-calculated over the entire image with a single convolution.

Feature Matching

Given features of image 1 and of image 2, how do we find the best matching of the two sets?

- Define a distance metric between a pair of feature descriptors
- Find the best matching.

Some metrics are determined by the descriptor (Hamming, \(L_1\) norm).

\[M(f_L, f_R) = ||f_L - f_R||_{L_2} < t \]

What is an optimal matching?

Naive: Pick the nearest neighbor (NN), set a threshold on distance.
Today

Feature Matching
Image Alignment
Panoramas
HW2!
Feature Matches
Feature Matching

Given features of image 1 and of image 2, how do we find the best matching of the two sets?

- Define a distance metric between a pair of feature descriptors
- Find the best matching.

Naive: Pick the nearest neighbor (NN), set a threshold on distance.

\[M(f_L, f_R) = \| f_L - f_R \|_{L_2} < t \]

Apply: Ratio test and Reciprocity

SIFT matching, ratio, recip., and object finding
Receiver Operator Characteristic (ROC) Curve

- Vary the threshold t
- Calculate precision and recall
- Take a t that has highest TP-rate, lowest FP-rate.

Precision: $\frac{TP}{(TP + FP)}$

Recall: $\frac{TP}{(TP + FN)}$
Feature Matching | Brute Force

For every feature i in image 1

- Go over all features in image 2
- Take the one (k) that are closest to i

Complexity: $O(n^2)$

Good:

- Simple
- Easily parallelizable
- Exhaustive, deterministic

Bad:

- Slow
Feature Matching | k-d tree

Accelerate the matching process.

Preprocess the “training” dataset:

- Hierarchically subdivide the k-dimensional space (by sorting)
- If a bin has more than m points - split to smaller spatial bins.

Build the tree: $O(k \cdot n \log n)$

Search the resulting tree: $O(\log n + m)$
Feature Matching | k-d tree

Accelerate the matching process.

Preprocess the "training" dataset:
- Hierarchically subdivide the k-dimensional space (by sorting)
- If a bin has more than m points - split to smaller spatial bins.

Build the tree: $O(k \cdot n \log n)$

Search the resulting tree: $O(\log n + m)$

$\%timeit -n 50 \quad \text{matches2to1} = \text{bf.knnMatch}(\text{des2}, \text{des1}, k=2)$
50 loops, best of 3: 17.1 ms per loop

$\%timeit -n 50 \quad \text{matches2to1} = \text{flann.knnMatch}(\text{des2}, \text{des1}, k=2)$
50 loops, best of 3: 10.5 ms per loop

Speedup: ~ x1.7 with ~1000 features

$\%timeit -n 50 \quad \text{matches2to1} = \text{bf.knnMatch}(\text{des2}, \text{des1}, k=2)$
50 loops, best of 3: 148 ms per loop

$\%timeit -n 50 \quad \text{matches2to1} = \text{flann.knnMatch}(\text{des2}, \text{des1}, k=2)$
50 loops, best of 3: 33 ms per loop

Speedup: ~ x4.4 with ~3300 features
Questions?
Image Alignment
Panoramic view, right?
Panoramic view, right?
Panoramic view, right?
Why align, stitch images together?

- The human eye has ~210°_h x 150°_v FOV
- Our images/cameras have narrow FOV
- Object is just. too. big.
- We want to deliver the “big picture”
Image Alignment | Applications

Panoramas
Google Street View
Image Alignment | Applications

360 VR
Aerial mapping, Surveillance, Drones!
Image Alignment | Applications

Image search, Search in image

[OpenCV]
Image Alignment | Applications

Video stabilization

[youtube]
Is image alignment hard?

Between any two images we may have:

- Little overlap
- Occlusion
- Clutter (confusing features)
- Intensity changes
- Distortions
- Different hardware, optics
- ...

→ Alignment should be robust to a lot of variance.
What if we were aligning real paper images?

- We can only rotate and translate.

This was done: Panography.
Feature Alignment

Instead of looking at pixels, we look at **interest points**.

- Less data to process
- More potential noise (from false matching)

Method overview:

1. Find key points and feature descriptors **(Last time)**
2. Match descriptors **(we saw today)**
3. Apply an overall geometric configuration **(Today)**
 - Affine, Homography
4. Find optimal parameters **(Today)**
 - Fitting, LSQ, robust LSQ
5. Blend
Alignment as a Fitting Problem

Over the feature matching:

- **Design a goodness of fit measure**

\[
\hat{T} = \arg\min_T f(T(X_1), X_2)
\]

\[
f(T(X_1), X_2) = \sum_i \|T(x_{1i}) - x_{2i}\|
\]

- **Design an optimization scheme**
 - Avoid local minima
 - Robust to outliers
Simple Line Fitting: Least Squares

Input: Points \(X = [(x_1, y_1), \ldots, (x_n, y_n)] \)

Output: (Best) Line through all points \(y = \hat{a}x + \hat{b} \)

\[
\begin{align*}
a, b &= \arg\min_{a,b} E(X) = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \\
E(X) &= \sum_{i=0}^{n} \left\| (x_i, 1) \begin{bmatrix} a \\ b \end{bmatrix} - y_i \right\|^2 = \|Ax - y\|^2 \\
 &= y^T y - 2(Ax)^T y + (Ax)^T (Ax)
\end{align*}
\]

\[
\frac{\partial E}{\partial x} = -2A^T y + 2A^T Ax = 0 \\
A^T Ax = A^T y \implies x = (A^T A)^{-1} A^T y
\]
Least Squares

Good:
- Linear (fast, closed form)

Bad:
- Sensitive to outliers (not robust)
- Only detects a single line

→ Use a robust estimator.
Robust Least Squares
Robust Least Squares

Choose between \textit{squared} or \textit{absolute} loss:

\[
E(x_i) = \begin{cases}
\|y_i - l(x_i)\|^2 & \text{if } \left| \frac{y_i - l(x_i)}{\sigma} \right| < \epsilon \\
|y_i - l(x_i)| & \text{if } \left| \frac{y_i - l(x_i)}{\sigma} \right| \geq \epsilon
\end{cases}
\]
RANSAC

RANDom SAmple Consensus

So far - use all the points for matching & minimize the effect of outliers (robust estimators)

RANSAC idea: use only a subset of the points, discard outliers from the model fitting.

Method:

1. Choose a minimal set of samples
2. Estimate parameters (e.g. with LSq)
3. Count the number of inliers
4. Repeat 1-3 \(n \) times, pick best configuration
5. Refine the solution using only inliers
Questions?
Let's assume T is Affine:

\[
\begin{pmatrix}
 x'_i \\
 y'_i \\
 1
\end{pmatrix}
= \begin{pmatrix}
 m_1 & m_2 & t_x \\
 m_3 & m_4 & t_y \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

Or in Homogeneous coordinates:
2D Affine transformation:
- Parallel lines and planes remain parallel, but not angles or lengths.
- 6 DoF: 4 for rotation, scale and shear + 2 for translation
- Still linear → we can use Linear Least Squares to solve, and possibly add robustness to outliers
Affine Alignment

\[E(X) = \sum_i^n \left\| \begin{pmatrix} x'_i \\ y'_i \end{pmatrix} - \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} - \begin{pmatrix} t_x \\ t_y \end{pmatrix} \right\|_{L_2} \]

\[
= \left\| \begin{pmatrix} \ldots \\ x_i \\ y_i \\ 0 \\ 0 \\ x_i \\ y_i \\ 0 \\ 0 \\ \ldots \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{pmatrix} - \begin{pmatrix} \ldots \\ x'_i \\ y'_i \end{pmatrix} \right\|_{L_2}
\]

A non-homogeneous system of linear equations, with 6 DoF.
Affine Alignment | Result

Somewhat aligned, But it will simply not do.
Homographies

What can we do besides Affine? a Homography.

- It does not preserve parallel lines.
- Still linear - we can use the same exact fitting process.

We added two more elements - what do they do?

Allow us to model perspective transformation.
Homography-based Alignment

Affine? Meh.

Homography! Yay!
Questions?
Panoramas
Mosaics: Geometry

Assume: Pure rotation

Method: We project all the images on a common plane.
Projective Panorama
What happens to the overlapping points?

Assume: Pure rotation

In camera 2:
\[
\begin{pmatrix}
X_2 \\
Y_2 \\
Z_2
\end{pmatrix} = K_2^{-1} \begin{pmatrix}
x_2 \\
y_2 \\
1
\end{pmatrix}
\]

Move to camera 1:
\[
\begin{pmatrix}
X_1 \\
Y_1 \\
Z_1
\end{pmatrix} = R_1 R_2^T K_2^{-1} \begin{pmatrix}
x_2 \\
y_2 \\
1
\end{pmatrix}
\]

Undo 2,
Apply 1

Project on image 1:
\[
\begin{pmatrix}
x_1 \\
y_1 \\
1
\end{pmatrix} \approx \begin{pmatrix}
x_2 \\
y_2 \\
1
\end{pmatrix}
\]

3x3 Homography

⇒ Homography is:
(1) Undo projection 2,
(2) rotate from cam 2 to cam 1,
(3) apply projection 1
A 360° Panorama With Homographies?

EEK.

Not really.
360° Panoramas

Imagine the images are on the wall of a cylinder...

View from inside the cylinder.
A 360° Panorama | Cylindrical Warping

Image coordinates → Cylindrical coordinates

Unit cylinder

Unwrapped cylinder

θ

h

(X, Y, Z)

$(\hat{x}, \hat{y}, \hat{z})$
Easier to go the inverse, from cylinder to image:

\[\theta = (x_{cyl} - x_c) / f \]
\[h = (y_{cyl} - y_c) / f \]
\[\hat{x} = \sin \theta \]
\[\hat{y} = h \]
\[\hat{z} = \cos \theta \]
Aligning in Cylindrical Coordinates

We rotated the camera by θ.

How does this affect the cylindrical image?
Aligning in Cylindrical Coordinates

We rotated the camera by θ.

How does this affect the cylindrical image?

It’s a (simple) translation.

Aligning cylindrical images needs only a translational model of 2 DoF.
How to Cut?

… Use Spherical Coordinates
Questions?
HW2: Image Stitching

Your goal is to create 2 panoramas:

1. Using homographies and perspective warping on a common plane (3 images).
2. Using cylindrical warping (many images).

In both options you should:

- Extract features and descriptors
- Match features
- Calculate the best model parameters
- Bonus (!!): Use your Laplacian Blending code to stitch the images together nicely

You will be given sample code to

- convert an image to cylindrical coordinates
- calculate affine or homography transform
- skeleton panorama maker

The rest is up to you...